Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0287390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507417

RESUMO

OBJECTIVE: To determine the effective dose and therapeutic potential of maropitant using through expression of mediators of oxidative stress, inflammatory and of the unfolded protein response (UPR) (bio) markers on spinal cord using a model of neuropathic pain induced through chronic constriction injury (CCI) in rats. STUDY DESIGN: Randomized, blinded, prospective experimental study. ANIMALS: 98 male Wistar rats. METHODS: Rats were anesthetized with sevoflurane and after CCI, they were randomly assigned to the following groups that received: vehicle, 3, 6, 15, 30 e 50 mg/kg/24q of maropitant. The effect on inflammatory mediators (IL10, TNFα), oxidative stress (GPx, CAT, SOD), microglial (IBA-1) and neuronal (NeuN, TACR1) markers was evaluated though immunohistochemistry and expression levels of markers of hypoxia (HIF1α, Nrf2), antioxidant enzymes (Catalse, Sod1 and GPx1), and endoplasmic reticulum stress mediators (GRP78, CHOP and PERK) through qRT-PCR. RESULTS: Intraperitoneal injection (IP) of maropitant inhibited nociception with ID50 values of 4,1 mg/kg (5,85-19,36) in a neuropathic pain model through CCI. A dose of 30 mg/kg/24q was significantly effective in reducing mechanical allodynia 1 to 4h after treatment with nociception inhibition (145,83%). A reduction in the expression of hypoxia factors (HIF1α, Nrf2) was observed, along with an increase in antioxidant activity (CAT, SOD and GPX). Additionally, there was a reduction in inflammatory markes (IL10, TNFα), microglial (IBA-1), and neuronal markers (NeuN, TACR1). CONCLUSION AND CLINICAL RELEVANCE: These findings demonstrate that the determined dose, administered daily for seven days, had an antinociceptive effect, as well as anti-inflammatory and antioxidant activity.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Quinuclidinas , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Doenças Neuroinflamatórias , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-10/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estudos Prospectivos , Estresse Oxidativo , Hiperalgesia/tratamento farmacológico , Estresse do Retículo Endoplasmático , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Superóxido Dismutase/metabolismo , Hipóxia/tratamento farmacológico
2.
Front Plant Sci ; 15: 1337750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348273

RESUMO

In plants, serpins are a superfamily of serine and cysteine protease inhibitors involved in stress and defense mechanisms, with potential for controlling agricultural pests, making them important biotechnological tools. The objective of this study was to characterize a serpin from Theobroma cacao, called TcSERPIN, to identify its endogenous targets and determine its function and biotechnological potential. TcSERPIN has 390 amino acid residues and shows conservation of the main active site, RCL. Cis-elements related to light, stress, hormones, anaerobic induction, cell cycle regulation and defense have been identified in the gene's regulatory region. TcSERPIN transcripts are accumulated in different tissues of Theobroma cacao. Furthermore, in plants infected with Moniliophtora perniciosa and Phytophthora palmivora, the expression of TcSERPIN was positively regulated. The protein spectrum, rTcSERPIN, reveals a typical ß-sheet pattern and is thermostable at pH 8, but loses its structure with temperature increases above 66°C at pH 7. At the molar ratios of 0.65 and 0.49, rTcSERPIN inhibited 55 and 28% of the activity of papain from Carica papaya and trypsin from Sus scrofa, respectively. The protease trap containing immobilized rTcSERPIN captured endogenous defense proteins from cocoa extracts that are related to metabolic pathways, stress and defense. The evaluation of the biotechnological potential against geohelminth larvae showed that rTcSERPIN and rTcCYS4 (Theobroma cacao cystatin 4) reduced the movement of larvae after 24 hours. The results of this work show that TcSERPIN has ideal biochemical characteristics for biotechnological applications, as well as potential for studies of resistance to phytopathogens of agricultural crops.

3.
Plant Physiol Biochem ; 207: 108332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224638

RESUMO

Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.


Assuntos
Agaricales , Cacau , Selênio , Cacau/microbiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Selênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Células Vegetais , Agaricales/metabolismo , Morte Celular , Glutationa Peroxidase/metabolismo , Doenças das Plantas/microbiologia
4.
Phytopathology ; 114(2): 427-440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665571

RESUMO

The apoplast performs important functions in the plant, such as defense against stress, and compounds present form the apoplastic washing fluid (AWF). The fungus Moniliophthora perniciosa, the causal agent of witches' broom disease (WBD) in Theobroma cacao, initially colonizes the apoplast in its biotrophic phase. In this period, the fungus can remain for approximately 60 days, until it changes to its second phase, causing tissue death and consequently large loss in the production of beans. To better understand the importance of the apoplast in the T. cacao-M. perniciosa interaction, we performed the first apoplastic proteomic mapping of two contrasting genotypes for WBD resistance (CCN51-resistant and Catongo-susceptible). Based on two-dimensional gel analysis, we identified 36 proteins in CCN-51 and 15 in Catongo. We highlight PR-proteins, such as peroxidases, ß-1,3-glucanases, and chitinases. A possible candidate for a resistance marker of the CCN-51 genotype, osmotin, was identified. The antioxidative metabolism of the superoxide dismutase (SOD) enzyme showed a significant increase (P < 0.05) in the AWF of the two genotypes under field conditions (FD). T. cacao AWF inhibited the germination of M. perniciosa basidiospores (>80%), in addition to causing morphological changes. Our results shed more light on the nature of the plant's defense performed by the apoplast in the T. cacao-M. perniciosa interaction in the initial (biotrophic) phase of fungal infection and therefore make it possible to expand WBD control strategies based on the identification of potential targets for resistance markers and advance scientific knowledge of the disease.


Assuntos
Cacau , Chocolate , Proteômica , Doenças das Plantas , Antioxidantes
5.
Plants (Basel) ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896082

RESUMO

Plant serpins are a superfamily of protein inhibitors that have been continuously studied in different species and have great biotechnological potential. However, despite ongoing studies with these inhibitors, the biological role of this family in the plant kingdom has not yet been fully clarified. In order to obtain new insights into the potential of plant serpins, this study presents the first systematic review of the topic, whose main objective was to scrutinize the published literature to increase knowledge about this superfamily. Using keywords and the eligibility criteria defined in the protocol, we selected studies from the Scopus, PubMed, and Web of Science databases. According to the eligible studies, serpins inhibit different serine and non-serine proteases from plants, animals, and pathogens, and their expression is affected by biotic and abiotic stresses. Moreover, serpins like AtSerpin1, OSP-LRS, MtSer6, AtSRP4, AtSRP5, and MtPiI4, act in resistance and are involved in stress-induced cell death in the plant. Also, the system biology analysis demonstrates that serpins are related to proteolysis control, cell regulation, pollen development, catabolism, and protein dephosphorylation. The information systematized here contributes to the design of new studies of plant serpins, especially those aimed at exploring their biotechnological potential.

6.
Plant Physiol Biochem ; 203: 107987, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722279

RESUMO

Cd contamination in cacao beans is one of the major problems faced by cocoa producing countries in Latin America. Cacao scion-rootstock combinations influence the Cd accumulation in the shoot of the plant. The objective of this work was to carry out a comparative analysis between cacao scion rootstock combinations (CCN 51/BN 34, CCN 51/PS 13.19, CCN 51/PH 16 and CCN 51/CCN 51), contrasting for tolerance to cadmium (Cd) toxicity, by means of leaf proteomic profiles, in order to elucidate molecular mechanisms involved in tolerance to Cd toxicity. Cacao scion-rootstock combinations were grown in soil with 150 mg Cd kg-1 soil, together with the control treatment. Leaf samples were collected 96 h after treatments were applied. There were alterations in the leaf proteome of the cacao scion-rootstock combinations, whose molecular responses to Cd toxicity varied depending on the combination. Leaf proteomic analyzes provided important information regarding the molecular mechanisms involved in the tolerance and intolerance of cacao scion-rootstock combinations to Cd toxicity. Enzymatic and non-enzymatic antioxidant systems, efficient for eliminating ROS, especially the expressions of APX and SOD, in addition to the increase in the abundance of metalloproteins, such as ferredoxins, rubredoxin, ALMT, Trx-1 and ABC-transporter were key mechanisms used in the Cd detoxification in cacao scion-rootstock combinations tolerant to Cd toxicity. Carboxylic acid metabolism, glucose activation and signal transduction were also important processes in the responses of cacao scion-rootstock combinations to Cd toxicity. The results confirmed CCN 51/BN 34 as a cacao scion-rootstock combination efficient in tolerance to Cd toxicity.

7.
Viruses ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766257

RESUMO

This study reports the virome investigation of pollinator species and other floral visitors associated with plants from the south of Bahia: Aphis aurantii, Atrichopogon sp., Dasyhelea sp., Forcipomyia taiwana, and Trigona ventralis hoozana. Studying viruses in insects associated with economically important crops is vital to understand transmission dynamics and manage viral diseases that pose as threats for global food security. Using literature mining and public RNA next-generation sequencing data deposited in the NCBI SRA database, we identified potential vectors associated with Malvaceae plant species and characterized the microbial communities resident in these insects. Bacteria and Eukarya dominated the metagenomic analyses of all taxon groups. We also found sequences showing similarity to elements from several viral families, including Bunyavirales, Chuviridae, Iflaviridae, Narnaviridae, Orthomyxoviridae, Rhabdoviridae, Totiviridae, and Xinmoviridae. Phylogenetic analyses indicated the existence of at least 16 new viruses distributed among A. aurantii (3), Atrichopogon sp. (4), Dasyhelea sp. (3), and F. taiwana (6). No novel viruses were found for T. ventralis hoozana. For F. taiwana, the available libraries also allowed us to suggest possible vertical transmission, while for A. aurantii we followed the infection profile along the insect development. Our results highlight the importance of studying the virome of insect species associated with crop pollination, as they may play a crucial role in the transmission of viruses to economically important plants, such as those of the genus Theobroma, or they will reduce the pollination process. This information may be valuable in developing strategies to mitigate the spread of viruses and protect the global industry.


Assuntos
Viroma , Vírus , Humanos , Abelhas , Animais , Filogenia , Insetos , Vírus/genética , Produtos Agrícolas
8.
Sci Rep ; 13(1): 16368, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773261

RESUMO

The genus Ceratocystis includes many phytopathogenic fungi that affect different plant species. One of these is Ceratocystis cacaofunesta, which is pathogenic to the cocoa tree and causes Ceratocystis wilt, a lethal disease for the crop. However, little is known about how this pathogen interacts with its host. The knowledge and identification of possible genes encoding effector proteins are essential to understanding this pathosystem. The present work aimed to predict genes that code effector proteins of C. cacaofunesta from a comparative analysis of the genomes of five Ceratocystis species available in databases. We performed a new genome annotation through an in-silico analysis. We analyzed the secretome and effectorome of C. cacaofunesta using the characteristics of the peptides, such as the presence of signal peptide for secretion, absence of transmembrane domain, and richness of cysteine residues. We identified 160 candidate effector proteins in the C. cacaofunesta proteome that could be classified as cytoplasmic (102) or apoplastic (58). Of the total number of candidate effector proteins, 146 were expressed, presenting an average of 206.56 transcripts per million. Our database was created using a robust bioinformatics strategy, followed by manual curation, generating information on pathogenicity-related genes involved in plant interactions, including CAZymes, hydrolases, lyases, and oxidoreductases. Comparing proteins already characterized as effectors in Sordariomycetes species revealed five groups of protein sequences homologous to C. cacaofunesta. These data provide a valuable resource for studying the infection mechanisms of these pathogens in their hosts.


Assuntos
Ascomicetos , Ceratocystis , Ascomicetos/genética , Biologia Computacional , Sequência de Aminoácidos , Doenças das Plantas/microbiologia
9.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511472

RESUMO

The fungus Moniliophthora perniciosa secretes protein effectors that manipulate the physiology of the host plant, but few effectors of this fungus have had their functions confirmed. We performed functional characterization of a promising candidate effector of M. perniciosa. The inoculation of rBASIDIN at 4 µmol L-1 in the mesophyll of leaflets of Solanum lycopersicum caused symptoms of shriveling within 6 h without the presence of necrosis. However, when sprayed on the plant at a concentration of 11 µmol L-1, it caused wilting symptoms only 2 h after application, followed by necrosis and cell death at 48 h. rBASIDIN applied to Theobroma cacao leaves at the same concentration caused milder symptoms. rBASIDIN caused hydrogen peroxide production in leaf tissue, damaging the leaf membrane and negatively affecting the photosynthetic rate of Solanum lycopersicum plants. Phylogenetic analysis indicated that BASIDIN has orthologs in other phytopathogenic basidiomycetes. Analysis of the transcripts revealed that BASIDIN and its orthologs are expressed in different fungal species, suggesting that this protein is differentially regulated in these basidiomycetes. Therefore, the results of applying BASIDIN allow the inference that it is an effector of the fungus M. perniciosa, with a strong potential to interfere in the defense system of the host plant.


Assuntos
Agaricales , Basidiomycota , Cacau , Cytisus , Cacau/microbiologia , Filogenia , Agaricales/metabolismo , Basidiomycota/genética , Necrose , Doenças das Plantas/microbiologia
10.
Front Plant Sci ; 14: 1193873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469770

RESUMO

Introduction: The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods: Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results: The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion: Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion: The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.

11.
Microorganisms ; 11(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37375069

RESUMO

A set of diseases caused by fungi and oomycetes are responsible for large losses in annual world cocoa production. Managing the impact caused by these diseases is very complex because a common solution has yet to be found for different pathogens. In this context, the systematic knowledge of Theobroma cacao L. pathogens' molecular characteristics may help researchers understand the possibilities and limitations of cocoa disease management strategies. This work systematically organized and summarized the main findings of omics studies of T. cacao eukaryotic pathogens, focusing on the plant-pathogen interaction and production dynamics. Using the PRISMA protocol and a semiautomated process, we selected papers from the Scopus and Web of Science databases and collected data from the selected papers. From the initial 3169 studies, 149 were selected. The first author's affiliations were mostly from two countries, Brazil (55%) and the USA (22%). The most frequent genera were Moniliophthora (105 studies), Phytophthora (59 studies) and Ceratocystis (13 studies). The systematic review database includes papers reporting the whole-genome sequence from six cocoa pathogens and evidence of some necrosis-inducing-like proteins, which are common in T. cacao pathogen genomes. This review contributes to the knowledge about T. cacao diseases, providing an integrated discussion of T. cacao pathogens' molecular characteristics, common mechanisms of pathogenicity and how this knowledge is produced worldwide.

12.
Heliyon ; 9(5): e15860, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153407

RESUMO

SARS-CoV-2 is a newly emerging virus from the Coronaviridae family that has already infected over 700 million people worldwide and killed over 6 million. This virus uses protease molecules to replicate and infect the host, which makes these molecules targets for therapeutic substances to eliminate the virus and treat infected people. Through the protein-protein molecular docking approach, we detected two cystatins from Theobroma cacao, TcCYS3 and TcCYS4, described as papain-like protease inhibitors. These inhibitors decreased SARS-CoV-2 genomic copies without toxicity to Vero cells. There is a need to perform comprehensive studies in relevant animal models and to investigate the action mechanisms of protease inhibitors from Theobroma cacao that control the replication of SARS-CoV-2 in human cells.

13.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982760

RESUMO

Significant scientific advances to elucidate the Moniliophthora perniciosa pathosystem have been achieved in recent years, but the molecular biology of this pathogen-host interaction is still a field with many unanswered questions. In order to present insights at the molecular level, we present the first systematic review on the theme. All told, 1118 studies were extracted from public databases. Of these, 109 were eligible for the review, based on the inclusion and exclusion criteria. The results indicated that understanding the transition from the biotrophic-necrotrophic phase of the fungus is crucial for control of the disease. Proteins with strong biotechnological potential or that can be targets for pathosystem intervention were identified, but studies regarding possible applications are still limited. The studies identified revealed important genes in the M. perniciosa-host interaction and efficient molecular markers in the search for genetic variability and sources of resistance, with Theobroma cacao being the most common host. An arsenal of effectors already identified and not explored in the pathosystem were highlighted. This systematic review contributes to the understanding of the pathosystem at the molecular level, offering new insights and proposing different paths for the development of new strategies to control witches' broom disease.


Assuntos
Agaricales , Cacau , Cacau/genética , Cacau/microbiologia , Doenças por Fitoplasmas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Biologia Molecular , Interações Hospedeiro-Patógeno/genética , Agaricales/genética
14.
J Fungi (Basel) ; 9(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36983529

RESUMO

Viruses that infect fungi are known as mycoviruses and are characterized by the lack of an extracellular phase. In recent years, the advances on nucleic acids sequencing technologies have led to a considerable increase in the number of fungi-infecting viral species described in the literature, with a special interest in assessing potential applications as fungal biocontrol agents. In the present study, we performed a comprehensive review using Scopus, Web of Science, and PubMed databases to mine mycoviruses data to explore their molecular features and their use in biotechnology. Our results showed the existence of 267 mycovirus species, of which 189 are recognized by the International Committee on Taxonomy of Viruses (ICTV). The majority of the mycoviruses identified have a dsRNA genome (38.6%), whereas the Botourmiaviridae (ssRNA+) alone represents 14% of all mycoviruses diversity. Regarding fungal hosts, members from the Sclerotinicaeae appeared as the most common species described to be infected by mycoviruses, with 16 different viral families identified so far. It is noteworthy that such results are directly associated with the high number of studies and strategies used to investigate the presence of viruses in members of the Sclerotinicaeae family. The knowledge about replication strategy and possible impact on fungi biology is available for only a small fraction of the mycoviruses studied, which is the main limitation for considering these elements potential targets for biotechnological applications. Altogether, our investigation allowed us to summarize the general characteristics of mycoviruses and their hosts, the consequences, and the implications of this knowledge on mycovirus-fungi interactions, providing an important source of information for future studies.

15.
Front Plant Sci ; 14: 1098401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925749

RESUMO

The zinc/iron-regulated transporter-like protein (ZIP) gene family first identified in plants is highly distributed in the plant kingdom. This family has previously been reported to transport several essential and non-essential cationic elements, including those toxic to many economically important crops such as cacao (Theobroma cacao L.). In this article, we present a detailed study on physicochemical properties, evolution, duplication, gene structure, promoter region and TcZIP family three-dimensional protein structure. A total of 11 TcZIP genes have been identified to encode proteins from 309 to 435 aa, with localization in the plasma membrane and chloroplast, containing 6-9 putative domains (TM). Interspecies phylogenetic analysis subdivided the ZIP proteins into four groups. Segmental duplication events significantly contributed to the expansion of TcZIP genes. These genes underwent high pressure of purifying selection. The three-dimensional structure of the proteins showed that α helix conformations are predominant with several pocket sites, containing the metal binding site, with the residues leucine (LEU), alanine (ALA), glycine (GLY), serine (SER), lysine (LYS) and histidine (HIS) the most predicted. Regarding the analysis of the protein-protein interaction and enrichment of the gene ontology, four biological processes were assigned, the most important being the cation transport. These new discoveries expand the knowledge about the function, evolution, protein structures and interaction of ZIP family proteins in cacao and contribute to develop cacao genotypes enriched with important mineral nutrients as well as genotypes that bioaccumulate or exclude toxic metals.

16.
Pathogens ; 12(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36839559

RESUMO

Theobroma cacao is one of the main crops of economic importance in the world as the source of raw material for producing chocolate and derivatives. The crop is the main source of income for thousands of small farmers, who produce more than 80% of the world's cocoa supply. However, the emergence, re-emergence and proliferation of pathogens, such as Ceratocystis spp., the causative agent of Ceratocystis wilt disease and canker disease, have been affecting the sustainability of many crops. Fungal control is laborious, often depending on fungicides that are expensive and/or toxic to humans, prompting researchers to look for new solutions to counteract the proliferation of these pathogens, including the use of biological agents such as mycoviruses. In this study, we investigated the diversity of microorganisms associated with the T. cacao pathogens Ceratocystis cacaofunesta and Ceratocystis fimbriata with a focus on the virome using RNA sequencing data available in public databases. We used a comprehensive bioinformatics pipeline containing several steps for viral sequence enrichment and took advantage of an integrated assembly step composed of different assemblers followed by sequence similarity searches using NCBI nonredundant databases. Our strategy was able to identify four putative C. cacaofunesta viruses (hypovirus, sclerotimonavirus, alphapartitivirus and narnavirus) and six C. fimbriata viruses (three alphaendornaviruses, one victorivirus and two mitoviruses). All the viral sequences identified showed similarity to viral genomes in public databases only at the amino acid level, likely representing new viral species. Of note, we present the first report of viruses associated with the cacao pathogens C. cacaofunesta and C. fimbriata and the second report of viral species infecting members of the Ceratocystidaceae family. Our findings highlight the need for further prospective studies to uncover the real diversity of fungus-infecting viruses that can contribute to the development of new management strategies.

17.
Plant Physiol Biochem ; 194: 550-569, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525937

RESUMO

Investigations of the compatibility between cacao genotypes of the population of the Parinari series (Pa), resulting from the reciprocal crossing of Pa 30 × Pa 169 and Pa 121 × Pa 169, allowed the verification of the occurrence of the recessive lethal single character called Luteus-Pa. These genotypes have this gene in heterozygosity, which when intercross or self-fertilize, segregate in a 3:1 ratio. Normal (NS) and mutant (MS) seedlings grow normally and, after a period of approximately 30 days of age, MS leaves begin to show a metallic yellow color, followed by necrotic spots, and death of the entire seedling, approximately 40 days after the emergency. The work evaluate the molecular, biochemical and micromorphological responses in NS and MS, with and without cotyledons, resulting from the crossing of the Pa 30 × Pa 169 cacao genotypes, aiming to elucidate the possible lethal mechanisms of the homozygous recessive Luteus-Pa. The presence of the lethal gene Luteus-Pa in the seedlings of the cacao genotypes of the population of the Parinari (Pa), with and without cotyledons, resulting from the crossing of Pa 30 × Pa 169, in addition to regulating the synthesis of proteins related to the photosynthetic and stress defense processes, promoted an increase in the synthesis of proteins involved in the glycolic pathway, induced oxidative stress, altered the mobilization of cotyledonary reserves, the integrity of cell membranes, leaf micromorphology and induced the death of seedlings, soon after depletion of protein and carbohydrate reserves, especially in the absence of cotyledons.


Assuntos
Cacau , Cacau/genética , Cacau/metabolismo , Plântula/genética , Plântula/metabolismo , Genes Letais , Cotilédone/genética , Genótipo
18.
Front Microbiol ; 13: 874319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992690

RESUMO

Agroforestry systems (AFS) for cocoa production combine traditional land-use practices with local biodiversity conservation, resulting in both ecological and agricultural benefits. The cacao-cabruca AFS model is widely implemented in regions of the Brazilian Atlantic Forest. Carpotroche brasiliensis (Raddi) A. Gray (Achariaceae) is a tree found in cabruca landscapes that is often used for reforestation and biotechnological applications. Despite its importance, we still lack information about viruses circulating in C. brasiliensis, particularly considering the possibility of spillover that could affect cocoa production. In our study, we analyzed the Carpotroche brasiliensis virome from Atlantic Forest and cacao-cabruca AFS regions using metatranscriptomics from several vegetative and reproductive organs. Our results revealed a diverse virome detecting near-complete or partial coding sequences of single- and double-stranded DNA and RNA viruses classified into at least six families (Botourmiaviridae, Bromoviridae, Caulimoviridae, Genomoviridae, Mitoviridae, and Rhabdoviridae) plus unclassified elements. We described with high confidence the near-complete and the partial genomes of two tentative novel viruses: Carpotroche-associated ilarvirus and Carpotroche-associated genomovirus, respectively. Interestingly, we also described sequences likely derived from a rhabdovirus, which could represent a novel member of the genus Gammanucleorhabdovirus. We observed higher viral diversity in cacao-cabruca AFS and reproductive organs of C. brasiliensis with preferential tropism to fruits, which could directly affect production. Altogether, our results provide data to better understand the virome in this unexplored agroecological interface, such as cacao-cabruca AFS and forest ecosystem, providing information on the aspects of virus-plant interactions.

19.
Sci Rep ; 12(1): 698, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027639

RESUMO

Protease inhibitors (PIs) are important biotechnological tools of interest in agriculture. Usually they are the first proteins to be activated in plant-induced resistance against pathogens. Therefore, the aim of this study was to characterize a Theobroma cacao trypsin inhibitor called TcTI. The ORF has 740 bp encoding a protein with 219 amino acids, molecular weight of approximately 23 kDa. rTcTI was expressed in the soluble fraction of Escherichia coli strain Rosetta [DE3]. The purified His-Tag rTcTI showed inhibitory activity against commercial porcine trypsin. The kinetic model demonstrated that rTcTI is a competitive inhibitor, with a Ki value of 4.08 × 10-7 mol L-1. The thermostability analysis of rTcTI showed that 100% inhibitory activity was retained up to 60 °C and that at 70-80 °C, inhibitory activity remained above 50%. Circular dichroism analysis indicated that the protein is rich in loop structures and ß-conformations. Furthermore, in vivo assays against Helicoverpa armigera larvae were also performed with rTcTI in 0.1 mg mL-1 spray solutions on leaf surfaces, which reduced larval growth by 70% compared to the control treatment. Trials with cocoa plants infected with Mp showed a greater accumulation of TcTI in resistant varieties of T. cacao, so this regulation may be associated with different isoforms of TcTI. This inhibitor has biochemical characteristics suitable for biotechnological applications as well as in resistance studies of T. cacao and other crops.


Assuntos
Cacau/química , Cacau/parasitologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/farmacologia , Agaricales/efeitos dos fármacos , Agaricales/crescimento & desenvolvimento , Animais , Cacau/metabolismo , Estabilidade de Medicamentos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Isoformas de Proteínas , Temperatura , Inibidores da Tripsina/química , Inibidores da Tripsina/metabolismo
20.
Front Microbiol ; 13: 1053562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817107

RESUMO

Introduction: Theobroma cacao, the cocoa tree, is a target for pathogens, such as fungi from the genera Phytophthora, Moniliophthora, Colletotrichum, Ceratocystis, among others. Some cacao pathogens are restricted to specific regions of the world, such as the Cacao swollen shoot virus (CSSV) in West African countries, while others are expanding geographically, such as Moniliophthora roreri in the Americas. M. roreri is one of the most threatening cacao pathogens since it directly attacks the cacao pods driving a significant reduction in production, and therefore economic losses. Despite its importance, the knowledge about the microenvironment of this pathogen and the cocoa pods is still poorly characterized. Methods: Herein we performed RNA sequencing of spores in differential stages of culture in a medium supplemented with cacao pod extract and mycelium collected of the susceptible variety ICT 7121 naturally infected by the pathogen to evaluate the diversity and transcriptional activity of microorganisms associated with the in vitro sporulation of M. roreri. Results: Our data revealed a great variety of fungi and bacteria associated with M. roreri, with an exceptional diversity of individuals from the genus Trichoderma sp. Interestingly, the dynamics of microorganisms from different kingdoms varied proportionally, suggesting they are somehow affected by M. roreri culture time. We also identified three sequences similar to viral genomes from the Narnaviridae family, posteriorly confirmed by phylogenetic analysis as members of the genus Narnavirus. Screening of M. roreri public datasets indicated the virus sequences circulating in samples from Ecuador, suggesting a wide spread of these elements. Of note, we did not identify traces of the viral sequences in the M. roreri genome or DNA sequencing, restricting the possibility of these sequences representing endogenized elements. Discussion: To the best of our knowledge, this is the first report of viruses infecting the fungus of the genus Moniliophthora and only the third description of viruses that are able to parasite elements from the Marasmiaceae family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...